

Welcome to TorXakis’s documentation!

Contents:

	Tutorial

	Information for developers

Tutorial

TODO.

	Trace and replay functionality

	Command Line Interface

Trace and replay functionality

TorXakis offers the possibility of writing the trace of a test, simulator,
or stepper run to a file. This trace can be used subsequently to replay a test,
which is useful in case a given error needs to be debugged. We illustrate this
by means of the Adder [https://github.com/TorXakis/TorXakis/blob/develop/examps/Adder/Adder.txs]
example.

Start the Adder SUT [https://github.com/TorXakis/TorXakis/tree/develop/examps/Adder] and the run
TorXakis:

tester Adder SutConnection
test 10

This will produce an output similar to this:

TXS >> 1: IN: Act { { (Action, [Plus(-7059,-2147474793)]) } }
TXS >> 2: OUT: Act { { (Result, [-2147481852]) } }
TXS >> 3: IN: Act { { (Action, [Plus(2245,-2147477795)]) } }
TXS >> 4: OUT: Act { { (Result, [-2147475550]) } }
TXS >> 5: IN: Act { { (Action, [Plus(-2662,-2147474703)]) } }
TXS >> 6: OUT: Act { { (Result, [-2147477365]) } }
TXS >> 7: IN: Act { { (Action, [Minus(-2147477744,-2147481994)]) } }
TXS >> 8: OUT: Act { { (Result, [4250]) } }
TXS >> 9: IN: Act { { (Action, [Plus(-2147473923,-7450)]) } }
TXS >> 10: OUT: Act { { (Result, [-2147481373]) } }
TXS >> PASS

Which corresponds with the output observed at the SUT:

Starting 1 adders.
Starting an adder listening on port 7890
Adders on port 7890 received input: Plus(-7059,-2147474793)
-2147481852
Adders on port 7890 received input: Plus(2245,-2147477795)
-2147475550
Adders on port 7890 received input: Plus(-2662,-2147474703)
-2147477365
Adders on port 7890 received input: Minus(-2147477744,-2147481994)
4250
Adders on port 7890 received input: Plus(-2147473923,-7450)
-2147481373

Then save the trace and exit TorXakis:

trace purp $> AdderPurpose.txs
exit

The trace command will produce a TorXakis source file with the
following contents:

PROCDEF replayProc [Action :: Operation; Result :: Int]() HIT
::=
Action ! Plus(-7059,-2147474793)
>-> Result ! -2147481852
>-> Action ! Plus(2245,-2147477795)
>-> Result ! -2147475550
>-> Action ! Plus(-2662,-2147474703)
>-> Result ! -2147477365
>-> Action ! Minus(-2147477744,-2147481994)
>-> Result ! 4250
>-> Action ! Plus(-2147473923,-7450)
>-> Result ! -2147481373
>-> HIT
ENDDEF

Here we see that the actions on the replayProc process correspond with the
output we observed when running the tests.

Using the trace (in the form a process) generated by TorXakis, together
with an AdderReplay [https://github.com/TorXakis/TorXakis/blob/develop/examps/Adder/AdderReplay.txs]
purpose definition:

-- | Adder model that uses the trace generated as test purpose.
PURPDEF AdderReplay ::=
 CHAN IN Action
 CHAN OUT Result
 -- Process `replayProc` will be generated by running TorXakis with the
 -- `Adder` model and the SUT, as follows:
 --
 -- > tester Adder Sut
 -- > test 10
 -- > trace purp $> AdderPurpose.txs
 -- > exit
 --
 -- Therefore this file should be loaded together with the generated purpose
 -- above (`AdderPurpose.txs`).
 GOAL replayAdd ::= replayProc [Action, Result] ()
ENDDEF

we can replay this test by restarting the SUT and executing the following
commands in the TorXakis command-line:

tester Adder AdderReplay SutConnection
test 11

This will produce the following output:

TXS << test 11
TXS >> 1: IN: Act { { (Action, [Plus(-7059,-2147474793)]) } }
TXS >> 2: OUT: Act { { (Result, [-2147481852]) } }
TXS >> 3: IN: Act { { (Action, [Plus(2245,-2147477795)]) } }
TXS >> 4: OUT: Act { { (Result, [-2147475550]) } }
TXS >> 5: IN: Act { { (Action, [Plus(-2662,-2147474703)]) } }
TXS >> 6: OUT: Act { { (Result, [-2147477365]) } }
TXS >> 7: IN: Act { { (Action, [Minus(-2147477744,-2147481994)]) } }
TXS >> 8: OUT: Act { { (Result, [4250]) } }
TXS >> 9: IN: Act { { (Action, [Plus(-2147473923,-7450)]) } }
TXS >> 10: OUT: Act { { (Result, [-2147481373]) } }
TXS >> 11: OUT: No Output (Quiescence)
TXS >> Goal replayAdd: Hit
TXS >> PASS

Since we ran the Adder model with an AdderReplay purpose the possible
actions of the model are constrained by the latter, allowing us to replay the
behavior observed when running the tests. Note TorXakis still does one
extra check, so we specified one extra step (11 instead of 10) to
account for this check.

Command Line Interface

TorXakis ships with a command line interface.

To see the available commands type help on the TorXakis prompt.

History

Command history can be navigated with the up and down arrows, or using
Ctrl-P and Ctrl-N.

To reverse-search in the command history type Ctrl+R.

The command history is kept in the user’s home directory (whose location varies
depending on the operating system), in a file called:

.torxakis-hist.txt

Information for developers

Making Linux packages

The ci/mk-package provides the scripts necessary to create linux deb
and rpm packages and test them. These scripts are meant to be run from the
root folder of the TorXakis repository.

The setup.sh script will install the necessary packages.

The package.sh script will create the packages.

The test.sh script will run Ubuntu docker containers (note that this
requires docker to be installed in your machine), where the packages will be
installed and tested. The install-test.sh script is called from the docker
containers to perform the TorXakis installation there.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to TorXakis’s documentation!

 		
 Tutorial

 		
 Trace and replay functionality

 		
 Command Line Interface

 		
 History

 		
 Information for developers

 		
 Making Linux packages

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

